If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+8x=46
We move all terms to the left:
6x^2+8x-(46)=0
a = 6; b = 8; c = -46;
Δ = b2-4ac
Δ = 82-4·6·(-46)
Δ = 1168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1168}=\sqrt{16*73}=\sqrt{16}*\sqrt{73}=4\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{73}}{2*6}=\frac{-8-4\sqrt{73}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{73}}{2*6}=\frac{-8+4\sqrt{73}}{12} $
| J-5-3j=7j+4 | | 1050=(x-12)(x+18)(6) | | |3-x|=2x | | 1.41=2^x | | 4+6r+8r+4=2(6+7r+4(r+4) | | 2/x+2=2 | | (4r^2)/9=25 | | -8(1-x)+x=(4-4x)+4 | | -2w-12=8(w+1) | | -5i=40 | | 2x-1/6=10 | | 3x/16=27 | | -5x+7=3(7-x) | | (x+4)^4/3=81 | | (x+16)(x-4)=476 | | 6h-12=20-4h | | (x+20)(x-4)=476 | | 16+7a=4a+4 | | x2+2X=100 | | (x+20)(x-4)=952 | | 10n+1=6n | | (x+20)(x-4)=1904 | | 4x-(6-3)= | | 1i=10 | | 3(5-2x)-1=8 | | 13=-8w+3(w-4) | | 112=-16(96)^2+96t=4 | | 6x+15=6(x-3 | | 1.8+2n=9.5-4n | | 2.5(t+2)-6=9 | | 34=23y-y^2 | | x(x-2)=3x(x+2)-3 |